Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Front Immunol ; 14: 1196031, 2023.
Article in English | MEDLINE | ID: covidwho-20236991

ABSTRACT

Swine acute diarrhoea syndrome coronavirus (SADS-CoV), which is a recently discovered enteric coronavirus, is the major aetiological agent that causes severe clinical diarrhoea and intestinal pathological damage in pigs, and it has caused significant economic losses to the swine industry. Nonstructural protein 5, also called 3C-like protease, cleaves viral polypeptides and host immune-related molecules to facilitate viral replication and immune evasion. Here, we demonstrated that SADS-CoV nsp5 significantly inhibits the Sendai virus (SEV)-induced production of IFN-ß and inflammatory cytokines. SADS-CoV nsp5 targets and cleaves mRNA-decapping enzyme 1a (DCP1A) via its protease activity to inhibit the IRF3 and NF-κB signaling pathways in order to decrease IFN-ß and inflammatory cytokine production. We found that the histidine 41 and cystine 144 residues of SADS-CoV nsp5 are critical for its cleavage activity. Additionally, a form of DCP1A with a mutation in the glutamine 343 residue is resistant to nsp5-mediated cleavage and has a stronger ability to inhibit SADS-CoV infection than wild-type DCP1A. In conclusion, our findings reveal that SADS-CoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by alpha coronaviruses.


Subject(s)
Alphacoronavirus , Coronavirus , Interferon Type I , Animals , Swine , Alphacoronavirus/genetics , Alphacoronavirus/metabolism , Coronavirus/metabolism , Endopeptidases , Interferon Type I/metabolism
2.
J Ethnopharmacol ; 312: 116485, 2023 Aug 10.
Article in English | MEDLINE | ID: covidwho-2305902

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fu-Zheng-Xuan-Fei formula (FF) is a prescription that has been clinically used through the basic theory of traditional Chinese medicine (TCM) for treating viral pneumonia. Although FF possesses a prominent clinical therapeutic effect, seldom pharmacological studies have been reported on its anti-influenza B virus (IBV) activity. AIM OF THE STUDY: Influenza is an acute infectious respiratory disease caused by the influenza virus, which has high annual morbidity and mortality worldwide. With a global decline in the COVID-19 control, the infection rate of influenza virus is gradually increasing. Therefore, it is of great importance to develop novel drugs for the effective treatment of influenza virus. Apart from conventional antiviral drugs, TCM has been widely used in the clinical treatment of influenza in China. Therefore, studying the antiviral mechanism of TCM can facilitate the scientific development of TCM. MATERIALS AND METHODS: Madin-Darby canine kidney cells (MDCK) and BALB/c mice were infected with IBV, and FF was added to evaluate the anti-IBV effects of FF both in vitro and in vivo by Western blotting, immunofluorescence, flow cytometry, and pathological assessment. RESULTS: It was found that FF exhibited anti-viral activity against IBV infection both in vivo and in vitro, while inducing macrophage activation and promoting M1 macrophage polarization. In addition, FF effectively regulated the signal transducer and activator of transcription (STAT) signaling pathway-mediated Th17/Treg balance to improve the lung tissue damage caused by IBV infection-induced inflammation. The findings provided the scientific basis for the antiviral mechanism of FF against IBV infection. CONCLUSIONS: This study shows that FF is a potentially effective antiviral drug against IBV infection.


Subject(s)
COVID-19 , Herpesvirus 1, Cercopithecine , Influenza, Human , Orthomyxoviridae Infections , Mice , Animals , Dogs , Humans , Influenza B virus , T-Lymphocytes, Regulatory , Macrophage Activation , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Influenza, Human/drug therapy , Madin Darby Canine Kidney Cells
3.
Emerg Microbes Infect ; 12(1): 2202269, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2294850

ABSTRACT

Breakthrough infections by SARS-CoV-2 variants pose a global challenge to COVID-19 pandemic control, and the development of more effective vaccines of broad-spectrum protection is needed. In this study, we constructed pVAX1-based plasmids encoding receptor-binding domain (RBD) chimera of SARS-CoV-1 and SARS-CoV-2 variants, including pAD1002 (encoding RBDSARS/BA1), pAD1003 (encoding RBDSARS/Beta) and pAD131 (encoding RBDBA1/Beta). Plasmids pAD1002 and pAD131 were far more immunogenic than pAD1003 in terms of eliciting RBD-specific IgG when intramuscularly administered without electroporation. Furthermore, dissolvable microneedle array patches (MAP) greatly enhanced the immunogenicity of these DNA constructs in mice and rabbits. MAP laden with pAD1002 (MAP-1002) significantly outperformed inactivated SARS-CoV-2 virus vaccine in inducing RBD-specific IFN-γ+ effector and memory T cells, and generated T lymphocytes of different homing patterns compared to that induced by electroporated DNA in mice. In consistence with the high titer neutralization results of MAP-1002 antisera against SARS-CoV-2 pseudoviruses, MAP-1002 protected human ACE2-transgenic mice from Omicron BA.1 challenge. Collectively, MAP-based DNA constructs encoding chimeric RBDs of SARS-CoV-1 and SARS-CoV-2 variants, as represented by MAP-1002, are potential COVID-19 vaccine candidates worthy further translational study.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Vaccines, DNA , Animals , Humans , Mice , Rabbits , COVID-19 Vaccines , SARS-CoV-2 , Pandemics , DNA , Mice, Transgenic , Antibodies, Viral , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus
4.
Front Microbiol ; 13: 1067725, 2022.
Article in English | MEDLINE | ID: covidwho-2230742

ABSTRACT

Influenza viruses pose a serious threat to human health, infecting hundreds of millions of people worldwide each year, resulting in a significant increase in global morbidity and mortality. Influenza activity has declined at the onset of the COVID-19 pandemic, but the genetic diversity of B/Victoria lineage viruses has increased significantly during this period. Therefore, the prevention and treatment of the influenza B Victoria strain virus should continue to attract research attention. In this study, we found that Atractyloside A (AA), one of the effective components in Atractylodes lancea (Thunb.) DC shows potential antiviral properties. This study shows that AA not only possesses anti-influenza B virus infection effects in vivo and in vitro but also can regulate macrophage polarization to the M2 type, which can effectively attenuate the damage caused by influenza B virus infection. Therefore, Atractyloside A may be an effective natural drug against B/Victoria influenza infection.

5.
Frontiers in microbiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2207640

ABSTRACT

Influenza viruses pose a serious threat to human health, infecting hundreds of millions of people worldwide each year, resulting in a significant increase in global morbidity and mortality. Influenza activity has declined at the onset of the COVID-19 pandemic, but the genetic diversity of B/Victoria lineage viruses has increased significantly during this period. Therefore, the prevention and treatment of the influenza B Victoria strain virus should continue to attract research attention. In this study, we found that Atractyloside A (AA), one of the effective components in Atractylodes lancea (Thunb.) DC shows potential antiviral properties. This study shows that AA not only possesses anti-influenza B virus infection effects in vivo and in vitro but also can regulate macrophage polarization to the M2 type, which can effectively attenuate the damage caused by influenza B virus infection. Therefore, Atractyloside A may be an effective natural drug against B/Victoria influenza infection.

6.
Arch Virol ; 2022 Sep 09.
Article in English | MEDLINE | ID: covidwho-2014164

ABSTRACT

The wide spread of coronavirus disease 2019 (COVID-19) has significantly threatened public health. Human herd immunity induced by vaccination is essential to fight the epidemic. Therefore, highly immunogenic and safe vaccines are necessary to control SARS-CoV-2, whose S protein is the antigenic determinant responsible for eliciting antibodies that prevent viral entry and fusion. In this study, we developed a SARS-CoV-2 DNA vaccine expressing the S protein, named pVAX-S-OP, which was optimized according to the human-origin codon preference and using polyinosinic-polycytidylic acid as an adjuvant. pVAX-S-OP induced specific antibodies and neutralizing antibodies in BALB/c and hACE2 transgenic mice. Furthermore, we observed 1.43-fold higher antibody titers in mice receiving pVAX-S-OP plus adjuvant than in those receiving pVAX-S-OP alone. Interferon gamma production in the pVAX-S-OP-immunized group was 1.58 times (CD3+CD4+IFN-gamma+) and 2.29 times (CD3+CD8+IFN-gamma+) lower than that in the pVAX-S-OP plus adjuvant group but higher than that in the control group. The pVAX-S-OP vaccine was also observed to stimulate a Th1-type immune response. When, hACE2 transgenic mice were challenged with SARS-CoV-2, qPCR detection of N and E genes showed that the viral RNA loads in pVAX-S-OP-immunized mice lung tissues were 104 times and 106 times lower than those of the PBS control group, which shows that the vaccine could reduce the amount of live virus in the lungs of hACE2 mice. In addition, pathological sections showed less lung damage in the pVAX-S-OP-immunized group. Taken together, our results demonstrated that pVAX-S-OP has significant immunogenicity, which provides support for developing SARS-CoV-2 DNA candidate vaccines.

7.
Proc Natl Acad Sci U S A ; 119(30): e2123065119, 2022 07 26.
Article in English | MEDLINE | ID: covidwho-1947760

ABSTRACT

SARS-CoV-2, the causative agent of the COVID-19 pandemic, undergoes continuous evolution, highlighting an urgent need for development of novel antiviral therapies. Here we show a quantitative mass spectrometry-based succinylproteomics analysis of SARS-CoV-2 infection in Caco-2 cells, revealing dramatic reshape of succinylation on host and viral proteins. SARS-CoV-2 infection promotes succinylation of several key enzymes in the TCA, leading to inhibition of cellular metabolic pathways. We demonstrated that host protein succinylation is regulated by viral nonstructural protein (NSP14) through interaction with sirtuin 5 (SIRT5); overexpressed SIRT5 can effectively inhibit virus replication. We found succinylation inhibitors possess significant antiviral effects. We also found that SARS-CoV-2 nucleocapsid and membrane proteins underwent succinylation modification, which was conserved in SARS-CoV-2 and its variants. Collectively, our results uncover a regulatory mechanism of host protein posttranslational modification and cellular pathways mediated by SARS-CoV-2, which may become antiviral drug targets against COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Host-Pathogen Interactions , Molecular Targeted Therapy , Protein Processing, Post-Translational , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/metabolism , COVID-19/virology , Caco-2 Cells , Exoribonucleases/metabolism , Host-Pathogen Interactions/drug effects , Humans , Protein Processing, Post-Translational/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sirtuins/metabolism , Succinates/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
8.
Front Immunol ; 13: 919477, 2022.
Article in English | MEDLINE | ID: covidwho-1938621

ABSTRACT

The interferon-induced transmembrane protein 3 (IFITM3), a small molecule transmembrane protein induced by interferon, is generally conserved in vertebrates, which can inhibit infection by a diverse range of pathogenic viruses such as influenza virus. However, the precise antiviral mechanisms of IFITM3 remain unclear. At least four post-translational modifications (PTMs) were found to modulate the antiviral effect of IFITM3. These include positive regulation provided by S-palmitoylation of cysteine and negative regulation provided by lysine ubiquitination, lysine methylation, and tyrosine phosphorylation. IFITM3 S-palmitoylation is an enzymatic addition of a 16-carbon fatty acid on the three cysteine residues within or adjacent to its two hydrophobic domains at positions 71, 72, and 105, that is essential for its proper targeting, stability, and function. As S-palmitoylation is the only PTM known to enhance the antiviral activity of IFITM3, enzymes that add this modification may play important roles in IFN-induced immune responses. This study mainly reviews the research progresses on the antiviral mechanism of IFITM3, the regulation mechanism of S-palmitoylation modification on its subcellular localization, stability, and function, and the enzymes that mediate the S-palmitoylation modification of IFITM3, which may help elucidate the mechanism by which this IFN effector restrict virus replication and thus aid in the design of therapeutics targeted at pathogenic viruses.


Subject(s)
Antiviral Agents , Lipoylation , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Cysteine , Interferons/metabolism , Lysine/metabolism , RNA-Binding Proteins/metabolism
9.
PLoS Pathog ; 18(6): e1010667, 2022 06.
Article in English | MEDLINE | ID: covidwho-1910704

ABSTRACT

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurotropic coronavirus belonging to the genus Betacoronavirus. Similar to pathogenic coronaviruses to which humans are susceptible, such as SARS-CoV-2, PHEV is transmitted primarily through respiratory droplets and close contact, entering the central nervous system (CNS) from the peripheral nerves at the site of initial infection. However, the neuroinvasion route of PHEV are poorly understood. Here, we found that BALB/c mice are susceptible to intranasal PHEV infection and showed distinct neurological manifestations. The behavioral study and histopathological examination revealed that PHEV attacks neurons in the CNS and causes significant smell and taste dysfunction in mice. By tracking neuroinvasion, we identified that PHEV invades the CNS via the olfactory nerve and trigeminal nerve located in the nasal cavity, and olfactory sensory neurons (OSNs) were susceptible to viral infection. Immunofluorescence staining and ultrastructural observations revealed that viral materials traveling along axons, suggesting axonal transport may engage in rapid viral transmission in the CNS. Moreover, viral replication in the olfactory system and CNS is associated with inflammatory and immune responses, tissue disorganization and dysfunction. Overall, we proposed that PHEV may serve as a potential prototype for elucidating the pathogenesis of coronavirus-associated neurological complications and olfactory and taste disorders.


Subject(s)
Betacoronavirus 1 , COVID-19 , Coronavirus Infections/pathology , Olfaction Disorders , Animals , Betacoronavirus 1/physiology , Humans , Mice , Olfaction Disorders/virology , SARS-CoV-2 , Smell , Swine
10.
J Virol ; 96(1): e0169521, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1816694

ABSTRACT

The replication of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is closely associated with the endoplasmic reticulum (ER) of infected cells. The unfolded protein response (UPR), which is mediated by ER stress (ERS), is a typical outcome in coronavirus-infected cells and is closely associated with the characteristics of coronaviruses. However, the interaction between virus-induced ERS and coronavirus replication is poorly understood. Here, we demonstrate that infection with the betacoronavirus porcine hemagglutinating encephalomyelitis virus (PHEV) induced ERS and triggered all three branches of the UPR signaling pathway both in vitro and in vivo. In addition, ERS suppressed PHEV replication in mouse neuro-2a (N2a) cells primarily by activating the protein kinase R-like ER kinase (PERK)-eukaryotic initiation factor 2α (eIF2α) axis of the UPR. Moreover, another eIF2α phosphorylation kinase, interferon (IFN)-induced double-stranded RNA-dependent protein kinase (PKR), was also activated and acted cooperatively with PERK to decrease PHEV replication. Furthermore, we demonstrate that the PERK/PKR-eIF2α pathways negatively regulated PHEV replication by attenuating global protein translation. Phosphorylated eIF2α also promoted the formation of stress granules (SGs), which in turn repressed PHEV replication. In summary, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets (e.g., PERK, PKR, and eIF2α) for antiviral drugs. IMPORTANCE Coronavirus diseases are caused by different coronaviruses of importance in humans and animals, and specific treatments are extremely limited. ERS, which can activate the UPR to modulate viral replication and the host innate response, is a frequent occurrence in coronavirus-infected cells. PHEV, a neurotropic betacoronavirus, causes nerve cell damage, which accounts for the high mortality rates in suckling piglets. However, it remains incompletely understood whether the highly developed ER in nerve cells plays an antiviral role in ERS and how ERS regulates viral proliferation. In this study, we found that PHEV infection induced ERS and activated the UPR both in vitro and in vivo and that the activated PERK/PKR-eIF2α axis inhibited PHEV replication through attenuating global protein translation and promoting SG formation. A better understanding of coronavirus-induced ERS and UPR activation may reveal the pathogenic mechanism of coronavirus and facilitate the development of new treatment strategies for these diseases.


Subject(s)
Betacoronavirus 1/physiology , Coronavirus Infections/metabolism , Eukaryotic Initiation Factor-2/metabolism , Stress Granules/metabolism , Virus Replication/physiology , eIF-2 Kinase/metabolism , Animals , Betacoronavirus 1/metabolism , Cell Line , Coronavirus Infections/virology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum Stress , Mice , Phosphorylation , Protein Biosynthesis , Signal Transduction , Unfolded Protein Response
11.
Virol J ; 18(1): 209, 2021 10 21.
Article in English | MEDLINE | ID: covidwho-1484316

ABSTRACT

BACKGROUND: Porcine vesicular disease is caused by the Seneca Valley virus (SVV), it is a novel Picornaviridae, which is prevalent in several countries. However, the pathogenicity of SVV on 5-6 week old pigs and the transmission routes of SVV remain unknown. METHODS: This research mainly focuses on the pathogenicity of the CH-GX-01-2019 strain and the possible vector of SVV. In this study, 5-6 week old pigs infected with SVV (CH-GX-01-2019) and its clinical symptoms (including rectal temperatures and other clinical symptoms) were monitored, qRT-PCR were used to detect the viremia and virus distribution. Neutralization antibody assay was set up during this research. Mosquitoes and Culicoides were collected from pigsties after pigs challenge with SVV, and SVV detection within mosquitoes and Culicoides was done via RT-PCR. RESULTS: The challenged pigs presented with low fevers and mild lethargy on 5-8 days post infection. The viremia lasted more than 14 days. SVV was detected in almost all tissues on the 14th day following the challenge, and it was significantly higher in the hoofs (vesicles) and lymph nodes in comparison with other tissues. Neutralizing antibodies were also detected and could persist for more than 28 days, in addition neutralizing antibody titers ranged from 1:128 to 1:512. Mosquitoes and Culicoides were collected from the pigsty environments following SVV infection. Although SVV was not detected in the mosquitoes, it was present in the Culicoides, however SVV could not be isolated from the positive Culicoides. CONCLUSIONS: Our work has enriched the knowledge relating to SVV pathogenicity and possible transmission routes, which may lay the foundation for further research into the prevention and control of this virus.


Subject(s)
Ceratopogonidae , Picornaviridae Infections , Picornaviridae , Swine Diseases , Animals , Farms , Mosquito Vectors , Picornaviridae Infections/veterinary , Swine , Virulence
12.
J Virol ; 95(19): e0085121, 2021 09 09.
Article in English | MEDLINE | ID: covidwho-1403028

ABSTRACT

Uncoordinated 51-like kinase 1 (ULK1) is a well-characterized initiator of canonical autophagy under basal or pathological conditions. Porcine hemagglutinating encephalomyelitis virus (PHEV), a neurotropic betacoronavirus (ß-CoV), impairs ULK1 kinase but hijacks autophagy to facilitate viral proliferation. However, the machinery of PHEV-induced autophagy initiation upon ULK1 kinase deficiency remains unclear. Here, the time course of PHEV infection showed a significant accumulation of autophagosomes (APs) in nerve cells in vivo and in vitro. Utilizing ULK1-knockout neuroblastoma cells, we have identified that ULK1 is not essential for productive AP formation induced by PHEV. In vitro phosphorylation studies discovered that mTORC1-regulated ULK1 activation stalls during PHEV infection, whereas AP biogenesis was controlled by AMPK-driven BECN1 phosphorylation. A lack of BECN1 is sufficient to block LC3 lipidation and disrupt recruitment of the LC3-ATG14 complex. Moreover, BECN1 acts as a bona fide substrate for ULK1-independent neural autophagy, and ectopic expression of BECN1 somewhat enhances PHEV replication. These findings highlight a novel machinery of noncanonical autophagy independent of ULK1 that bypasses the conserved initiation circuit of AMPK-mTORC1-ULK1, providing new insights into the interplay between neurotropic ß-CoV and the host. IMPORTANCE The ongoing coronavirus disease 2019 (COVID-19) pandemic alongside the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) pose Betacoronavirus (ß-CoV) as a global public health challenge. Coronaviruses subvert, hijack, or utilize autophagy to promote proliferation, and thus, exploring the cross talk between ß-CoV and autophagy is of great significance in confronting future ß-CoV outbreaks. Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurotropic ß-CoV that invades the central nervous system (CNS) in pigs, but understanding of the pathogenesis for PHEV-induced neurological dysfunction is yet limited. Here, we discovered a novel regulatory principle of neural autophagy initiation during PHEV infection, where productive autophagosome (AP) biogenesis bypasses the multifaceted regulation of ULK1 kinase. The PHEV-triggered noncanonical autophagy underscores the complex interactions of virus and host and will help in the development of therapeutic strategies targeting noncanonical autophagy to treat ß-CoV disease.


Subject(s)
Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy/physiology , Betacoronavirus 1/metabolism , Animals , Autophagosomes/metabolism , Beclin-1/metabolism , COVID-19 , Cell Line , Gene Knockout Techniques , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred BALB C , Neurons/metabolism , Phosphorylation , SARS-CoV-2
13.
Vet Microbiol ; 252: 108918, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-909094

ABSTRACT

Porcine haemagglutinating encephalomyelitis virus (PHEV) is a member of coronavirus that causes acute infectious disease and high mortality in piglets. The transcription factor IRF3 is a central regulator of type I interferon (IFN) innate immune signalling. Here, we report that PHEV infection of RAW264.7 cells results in strong suppression of IFN-ß production in the early stage. A comparative analysis of the upstream effector of IFN-ß transcription demonstrated that deactivation of IRF3, but not p65 or ATF-2 proteins, is uniquely attributed to failure of early IFN-ß induction. Moreover, the RIG-I/MDA5/MAVS/TBK1-dependent protective response that regulates the IRF3 pathway is not disrupted by PHEV and works well underlying the deactivated IRF3-mediated IFN-ß inhibition. After challenge with poly(I:C), a synthetic analogue of dsRNA used to stimulate IFN-ß secretion in the TLR-controlled pathway, we show that PHEV and poly(I:C) regulate IFN-ß-induction via two different pathways. Collectively, our findings reveal that deactivation of IRF3 is a specific mechanism that contributes to termination of type I IFN signalling during early infection with PHEV independent of the conserved RIG-I/MAVS/MDA5/TBK1-mediated innate immune response.


Subject(s)
Betacoronavirus 1/immunology , Coronavirus Infections/veterinary , Interferon Regulatory Factor-3/genetics , Interferon-beta/immunology , Animals , Betacoronavirus 1/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Immunity, Innate , Interferon Regulatory Factor-3/immunology , Mice , Poly I-C/pharmacology , RAW 264.7 Cells , Signal Transduction/immunology
14.
Virus Res ; 278: 197869, 2020 03.
Article in English | MEDLINE | ID: covidwho-2388

ABSTRACT

Porcine deltacoronavirus (PDCoV) is the etiological agent of acute diarrhoea and vomiting in pigs, threatening the swine industry worldwide. Although several PDCoV studies have been conducted in China, more sequence information is needed to understand the molecular characterization of PDCoV. In this study, the partial ORF1a, spike protein (S) and nucleocapsid protein (N) were sequenced from Shandong Province between 2017 and 2018. The sequencing results for the S protein from 10 PDCoV strains showed 96.7 %-99.7 % nucleotide sequence identity with the China lineage strains, while sharing a lower level of nucleotide sequence identity, ranging from 95.7 to 96.8%, with the Vietnam/Laos/Thailand lineage strains. N protein sequencing analysis showed that these strains showed nucleotide homologies of 97.3%-99.3% with the reference strains. Phylogenetic analyses based on S protein sequences showed that these PDCoV strains were classified into the China lineage. The discontinuous 2 + 3 aa deletions at 400-401 and 758-760 were found in the Nsp2 and Nsp3 coding region in five strains, respectively, with similar deletions having been identified in Vietnam, Thailand, and Laos. Three novel patterns of deletion were observed for the first time in the Nsp2 and Nsp3 regions. Importantly, those findings suggest that PDCoV may have undergone a high degree of variation since PDCoV was first detected in China.


Subject(s)
Coronavirus Infections/veterinary , Deltacoronavirus/classification , Deltacoronavirus/genetics , Genome, Viral , Phylogeny , Animals , China/epidemiology , Coronavirus Infections/epidemiology , Diarrhea/virology , Feces/virology , Gene Deletion , Prevalence , Swine , Swine Diseases/virology , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL